IT Solution Menu

N O T I C E

Project on Computer topics, Programs for practicals for BCA Students, and Mobile Android app requirements. Please pay less and get more immediate delivery for school and higher level. Thank You. Contact me - at +91-8800304018(w)

Friday, January 3, 2025

The Recursively Traversal of Binary Tree #12

 


The Recursively Traversal of Binary Tree

1. PRE-ORDERS TRAVERSAL RECURSIVELY

 

To traverse a non-empty binary tree in pre order following steps one to be processed

 

1. Visit the root node

 

2. Traverse the left sub-tree in preorder

 

3. Traverse the right sub-tree in preorder

 

That is, in preorder traversal, the root node is visited (or processed) first, before traveling through left and right sub trees recursively. It can be implement in C/C++ func-tion as below :

 

 

void preorder (Node * Root)

 

{

 

If (Root != NULL)

 

{

 

printf (“%d\n”,Root   Info);

 

preorder(Root L child);

 

preorder(Root    R child);

 

}

 

}

 

Fig.

 

The preorder traversal of a binary tree in Fig. is
A, B, D, E, H, I, C, F, G, J.

 

2. IN ORDER TRAVERSAL RECURSIVELY

 

The in-order traversal of a non-empty binary tree is defined as follows :

 

1. Traverse the left sub tree in order

 

2. Visit the root node

 

3. Traverse the right sub tree in order

 

In order traversal, the left sub-tree is traversed recursively, before visiting the root. After visiting the root the right sub-tree is traversed recursively, in order fashion. The procedure for an in-order traversal is given below :

 

void inorder (NODE *Root)

 

{

 

If (Root != NULL)

 

{

 

inorder(Root    L child);

 

printf (“%d\n”,Root info);

 

inorder(Root    R child);

 

}

 

}

 

The in-order traversal of a binary tree in Fig. is
D, B, H, E, I, A, F, C, J, G.

 

3. POST ORDER TRAVERSAL RECURSIVELY

 

The post-order traversal of a non-empty binary tree can be defined as :

 

1. Traverse the left sub tree in post order

 

2. Traverse the right sub tree in post order

 

3. Visit the root node

 

In post-order traversal, the left and right sub-tree (s) are recursively processed before visiting the root.

 

void postorder (NODE *Root)

 

{

If (Root != NULL)

{

postorder(Root          Lchild);

postorder(Root          Rchild);

printf (“%d\n”,Root à info);

}

}

The post order traversal of a binary tree in Fig. is
D, H, I, E, B, F, J, G, C, A

 

//PROGRAM TO IMPLEMENT THE INSERTION AND DELETION IN //B TREE  CODED AND COMPILED USING TURBO C

 

#include<stdlib.h>

#include<malloc.h>

#include<conio.h>

#include<stdio.h>

#define M 5

//Structure is defined

struct node{

int n; /* n < M No. of keys in node will always less than order of B tree */ int keys[M–1]; /*array of keys*/

struct node *p[M]; /* (n+1 pointers will be in use) */ }*root=NULL;

typedef struct node *NODE;

enum Key Status { Duplicate,Search Failure,Success,InsertIt,Less Keys };

//Function declrations

void insert(int key);

void display(NODE root,int);


void DelNode(int x);

void search(int x);

enum KeyStatus ins(NODE r, int x, int* y, NODE * u); int searchPos(int x,int *key_arr, int n); enum KeyStatus del(NODE r, int x);

void main()

{

int key;

int choice;

 

while(1)

 

{

 

clrscr();//Clear the screen

 

//Menu options

 

printf (“\n1.Insert\n”);

printf (“2.Delete\n”);

printf (“3.Search\n”);

printf (“4.Display\n”);

printf (“5.Quit\n”);

printf (“\nEnter your choice : ”);

scanf (“%d”,&choice);

switch(choice)

 

{

 

case 1:

printf (“\nEnter the key : ”);

scanf (“%d”,&key);

insert(key);

break;

case 2:

printf (“\nEnter the key : ”);

scanf (“%d”,&key);

DelNode(key);

break;

case 3:

printf (“\nEnter the key : ”);

scanf (“%d”,&key);

search(key);

getch();

break;

case 4:

printf (“\nBtree is :\n”);


 

 

 

display(root,0);

getch();

break;

case 5:

exit(1);

default:

printf (“\nWrong choice\n”);

getch();

break;

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

 

void insert(int key)

 

{

NODE newnode;

int upKey;

enum KeyStatus value;

value = ins(root, key, &upKey, &newnode);

//Cheking for duplicate keys

if (value == Duplicate)

{

printf(“\nKey already available\n”);

getch();

}

if (value == InsertIt)

{

NODE uproot = root;

//Allocating memory

root=(NODE)malloc(sizeof(struct node));

root->n = 1;

root->keys[0] = upKey;

root->p[0] = uproot;

root->p[1] = newnode;

}/*End of if */

}/*End of insert()*/

 

enum KeyStatus ins(NODE ptr, int key, int *upKey,NODE *newnode)

{

NODE newPtr,lastPtr;

int pos, i, n,splitPos;

int newKey, lastKey;

enum KeyStatus value;

if (ptr == NULL)

{

*newnode = NULL;

*upKey = key;

return InsertIt;

}

n = ptr->n;

pos = searchPos(key, ptr->keys, n);

if (pos < n && key == ptr->keys[pos])

return Duplicate;

value = ins(ptr->p[pos], key, &newKey, &newPtr);

if (value != InsertIt)

return value;

/*If keys in node is less than M–1 where M is order of B tree*/

if (n < M – 1)

{

pos = searchPos(newKey, ptr->keys, n);

/*Shifting the key and pointer right for inserting the new key*/

for (i=n; i>pos; i--)

{

ptr->keys[i] = ptr->keys[i–1];

ptr->p[i+1] = ptr->p[i];

}

/*Key is inserted at exact location*/

ptr->keys[pos] = newKey;

ptr->p[pos+1] = newPtr;

++ptr->n; /*incrementing the number of keys in node*/

return Success;

}/*End of if */

/*If keys in nodes are maximum and position of node to be inserted is last*/

 

if (pos == M – 1)

{

lastKey = newKey;

lastPtr = newPtr;

}

else /*If keys in node are maximum and position of node to be inserted is not last*/

{

lastKey = ptr->keys[M–2];

lastPtr = ptr->p[M–1];

for (i=M–2; i>pos; i--)


{

ptr->keys[i] = ptr->keys[i–1];

ptr->p[i+1] = ptr->p[i];

}

ptr->keys[pos] = newKey;

ptr->p[pos+1] = newPtr;

}

splitPos = (M – 1)/2;

(*upKey) = ptr->keys[splitPos];

(*newnode)=(NODE)malloc(sizeof(struct node));/*Right node after split*/

ptr->n = splitPos; /*No. of keys for left splitted node*/

(*newnode)->n = M–1-splitPos;/*No. of keys for right splitted node*/

for (i=0; i < (*newnode)->n; i++)

{

(*newnode)->p[i] = ptr->p[i + splitPos + 1];

if(i < (*newnode)->n – 1)

(*newnode)->keys[i] = ptr->keys[i + splitPos + 1];

else

(*newnode)->keys[i] = lastKey;

}

(*newnode)->p[(*newnode)->n] = lastPtr;

return InsertIt;

}/*End of ins()*/

void display(NODE ptr, int blanks)

{

if (ptr)

{

int i;

for(i=1;i<=blanks;i++)

printf (“ ”);

for (i=0; i < ptr->n; i++)

printf (“%d ”,ptr->keys[i]);

printf (“\n”);

for (i=0; i <= ptr->n; i++)

display(ptr->p[i], blanks+10);

}/*End of if*/

}/*End of display()*/

void search(int key)

{


int pos, i, n;

NODE ptr = root;

printf (“\nSearch path:\n”);

while (ptr)

{

n = ptr->n;

for (i=0; i < ptr->n; i++)

printf (“ %d”,ptr->keys[i]);

printf (“\n”);

pos = searchPos(key, ptr->keys, n);

if (pos < n && key == ptr->keys[pos])

{

printf (“\nKey %d found in position %d of last dispalyed node\n”,key,i); return;

}

ptr = ptr->p[pos];

}

printf (“\nKey %d is not available\n”,key);

}/*End of search()*/

int searchPos(int key, int *key_arr, int n)

{

int pos=0;

while (pos < n && key > key_arr[pos])

pos++;

return pos;

}/*End of searchPos()*/

void DelNode(int key)

{

NODE uproot;

enum KeyStatus value;

value = del(root,key);

switch (value)

{

case SearchFailure:

printf(“\nKey %d is not available\n”,key);

break;

case LessKeys:

uproot = root;

root = root->p[0];

free(uproot);


break;

}/*End of switch*/

}/*End of delnode()*/

 

enum KeyStatus del(NODE ptr, int key)

{

int pos, i, pivot, n ,min;

int *key_arr;

enum KeyStatus value;

NODE *p,lptr,rptr;

if (ptr == NULL)

return SearchFailure;

/*Assigns values of node*/

n=ptr->n;

key_arr = ptr->keys;

p = ptr->p;

min = (M – 1)/2;/*Minimum number of keys*/

pos = searchPos(key, key_arr, n);

if (p[0] == NULL)

{

if (pos == n || key < key_arr[pos])

return SearchFailure;

/*Shift keys and pointers left*/

for (i=pos+1; i < n; i++)

{

key_arr[i–1] = key_arr[i];

p[i] = p[i+1];

}

return --ptr->n >= (ptr==root ? 1 : min) ? Success : LessKeys; }

/*End of if */

if (pos < n && key == key_arr[pos])

{

struct node *qp = p[pos], *qp1;

int nkey;

while(1)

{

nkey = qp->n;

qp1 = qp->p[nkey];

if (qp1 == NULL)


break;

qp = qp1;

}/*End of while*/

key_arr[pos] = qp->keys[nkey–1];

qp->keys[nkey – 1] = key;

}/*End of if */

value = del(p[pos], key);

if (value != LessKeys)

return value;

if (pos > 0 && p[pos–1]->n > min)

{

pivot = pos – 1; /*pivot for left and right node*/

lptr = p[pivot];

rptr = p[pos];

/*Assigns values for right node*/

rptr->p[rptr->n + 1] = rptr->p[rptr->n];

for (i=rptr->n; i>0; i--)

{

rptr->keys[i] = rptr->keys[i–1];

rptr->p[i] = rptr->p[i–1];

}

rptr->n++;

rptr->keys[0] = key_arr[pivot];

rptr->p[0] = lptr->p[lptr->n];

key_arr[pivot] = lptr->keys[--lptr->n];

return Success;

}/*End of if */

if (pos<n && p[pos+1]->n > min)

{

pivot = pos; /*pivot for left and right node*/

lptr = p[pivot];

rptr = p[pivot+1];

/*Assigns values for left node*/

lptr->keys[lptr->n] = key_arr[pivot];

lptr->p[lptr->n + 1] = rptr->p[0];

key_arr[pivot] = rptr->keys[0];

lptr->n++;

rptr->n--;

for (i=0; i < rptr->n; i++)

{

rptr->keys[i] = rptr->keys[i+1];

rptr->p[i] = rptr->p[i+1];

}/*End of for*/

rptr->p[rptr->n] = rptr->p[rptr->n + 1];

return Success;

}/*End of if */

if(pos == n)

pivot = pos–1;

else

pivot = pos;

lptr = p[pivot];

rptr = p[pivot+1];

/*merge right node with left node*/

lptr->keys[lptr->n] = key_arr[pivot];

lptr->p[lptr->n + 1] = rptr->p[0];

for (i=0; i < rptr->n; i++)

{

lptr->keys[lptr->n + 1 + i] = rptr->keys[i];

lptr->p[lptr->n + 2 + i] = rptr->p[i+1];

}

lptr->n = lptr->n + rptr->n +1;

free(rptr); /*Remove right node*/

for (i=pos+1; i < n; i++)

{

key_arr[i–1] = key_arr[i];

p[i] = p[i+1];

}

return --ptr->n >= (ptr == root ? 1 : min) ? Success : LessKeys; }/*End of del()*/

 

ü ======================

ü Like and Share with friends

ü =====================

No comments:

Post a Comment

Top Popular Post